Evolutionary Selection on Barrier Activity: Bar1 Is an Aspartyl Protease with Novel Substrate Specificity

نویسندگان

  • Stephen K. Jones
  • Starlynn C. Clarke
  • Charles S. Craik
  • Richard J. Bennett
چکیده

UNLABELLED Peptide-based pheromones are used throughout the fungal kingdom for coordinating sexual responses between mating partners. Here, we address the properties and function of Bar1, an aspartyl protease that acts as a "barrier" and antagonist to pheromone signaling in multiple species. Candida albicans Bar1 was purified and shown to exhibit preferential cleavage of native α pheromone over pheromones from related fungal species. This result establishes that protease substrate specificity coevolved along with changes in its pheromone target. Pheromone cleavage by Bar1 occurred between residues Thr-5 and Asn-6 in the middle of the tridecapeptide sequence. Surprisingly, proteolytic activity was independent of the amino acid residues present at the scissile bond and instead relied on residues at the C terminus of α pheromone. Unlike most aspartyl proteases, Bar1 also exhibited a near-neutral pH optimum and was resistant to the class-wide inhibitor pepstatin A. In addition, genetic analysis was performed on C. albicans BAR1 and demonstrated that the protease not only regulates endogenous pheromone signaling but also can limit interspecies pheromone signaling. We discuss these findings and propose that the unusual substrate specificity of Bar1 is a consequence of its coevolution with the α pheromone receptor Ste2 for their shared peptide target. IMPORTANCE Pheromones are important for intraspecies communication across the tree of life. In the fungal kingdom, extracellular proteases play a key role in antagonizing pheromone signaling in multiple species. This study examines the properties and function of Candida albicans Bar1, an aspartyl protease that cleaves and thereby inactivates α pheromone. We demonstrate that Bar1 plays important roles in regulating both intra- and interspecies pheromone signaling. The fungal protease shows preferential activity on the endogenous pheromone, but, surprisingly, cleavage activity is dependent on amino acid residues distal to the scissile bond. We propose that the unusual substrate specificity of Bar1 is a direct result of coevolution with Ste2, the receptor for α pheromone, for recognition of the same peptide target. The novel specificity of Bar1 reveals the complex forces shaping the evolution of mating pathways in fungi and uncovers a protease with potentially important applications in the biotechnology industry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Barrier activity in Candida albicans mediates pheromone degradation and promotes mating.

Mating in Candida albicans and Saccharomyces cerevisiae is regulated by the secretion of peptide pheromones that initiate the mating process. An important regulator of pheromone activity in S. cerevisiae is barrier activity, involving an extracellular aspartyl protease encoded by the BAR1 gene that degrades the alpha pheromone. We have characterized an equivalent barrier activity in C. albicans...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Yeast Mating and Image-Based Quantification of Spatial Pattern Formation

Communication between cells is a ubiquitous feature of cell populations and is frequently realized by secretion and detection of signaling molecules. Direct visualization of the resulting complex gradients between secreting and receiving cells is often impossible due to the small size of diffusing molecules and because such visualization requires experimental perturbations such as attachment of...

متن کامل

Integrated Activity and Genetic Profiling of Secreted Peptidases in Cryptococcus neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival and Virulence

The opportunistic fungal pathogen Cryptococcus neoformans is a major cause of mortality in immunocompromised individuals, resulting in more than 600,000 deaths per year. Many human fungal pathogens secrete peptidases that influence virulence, but in most cases the substrate specificity and regulation of these enzymes remains poorly understood. The paucity of such information is a roadblock to o...

متن کامل

Profiling serine protease substrate specificity with solution phase fluorogenic peptide microarrays.

A novel microarray-based proteolytic profiling assay enabled the rapid determination of protease substrate specificities with minimal sample and enzyme usage. A 722-member library of fluorogenic protease substrates of the general format Ac-Ala-X-X-(Arg/Lys)-coumarin was synthesized and microarrayed, along with fluorescent calibration standards, in glycerol nanodroplets on microscope slides. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015